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NASH EQUILIBRIA ON (UN)STABLE NETWORKS

ANTON BADEV
Reserve Bank Operations and Payment Systems, Federal Reserve Board

In response to a change, individuals may choose to follow the responses of their
friends or, alternatively, to change their friends. To model these decisions, consider a
game where players choose their behaviors and friendships. In equilibrium, players in-
ternalize the need for consensus in forming friendships and choose their optimal strate-
gies on subsets of k players—a form of bounded rationality. The k-player consensual
dynamic delivers a probabilistic ranking of a game’s equilibria, and via a varying k,
facilitates estimation of such games.

Applying the model to adolescents’ smoking suggests that: (a) the response of the
friendship network to changes in tobacco price amplifies the intended effect of price
changes on smoking, (b) racial desegregation of high schools decreases the overall
smoking prevalence, (c) peer effect complementarities are substantially stronger be-
tween smokers compared to between nonsmokers.

KEYWORDS: Games on endogenous networks, adolescent smoking, multiplicity.

1. INTRODUCTION

IN RESPONSE TO A CHANGE in their environment, individuals may choose to follow the
responses of their friends or, alternatively, choose differently and change their friends.
In the context of evaluating public policies (e.g., an excise tax on tobacco consumption),
this latter alternative motivates a shift from questions such as how the friendship network
propagates changes in individuals’ behaviors (e.g., individuals’ smoking choices), say, due
to a policy intervention, to questions such as how the friendship network responds to such
changes in individuals’ behaviors. This paper studies this shift in perspective from both a
theoretical and public policy view.

In order to do so, consider an environment where individuals choose both their behav-
iors and friendships. While these choices are fundamentally different, their difference is
not related to the presence of strategic incentives or instincts for selfish decisions. Rather,
choosing a friend presumes a consent (Jackson and Wolinsky (1996)) while choosing be-
haviors does not (Nash (1950)). The tension between the instinct for selfish choices and
the consensual nature of humans’ friendships can be prototyped as a game of link and
node statuses where the players’ decision problem is augmented with a set of stability con-
straints. These constraints reflect that a player internalizes the need for consent in forming
links, or in other words, a player may form her links only with those who desire to be her
friends.
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A player’s observed friendship links and behaviors are likely to compare favorably
against her alternatives, that is, are likely to be robust against a set of deviations. The
complexity of individuals’ decision problem, captured by the number of possible devia-
tions, motivates a family of equilibria indexed by the radius of permissible deviations.1
For a fixed parameter k, a Nash equilibrium in a k-stable (NEkS) network emerges when
no player has a profitable deviation that is permissible by the stability constraints and that
involves less than k links. In the proposed model, all NEkS networks are pairwise sta-
ble, and for k = n, NEkS networks are pairwise-Nash networks (Proposition 2; Jackson
(2005) overviews these concepts).

A primitive feature of games of links and behaviors is payoff externalities, which can
lead to multiplicity of NEkS networks. The proposed tool to reconcile this multiplicity is a
probabilistic ranking—consistent with the NEkS play—of a game’s outcomes. This rank-
ing obtains in a random utility re-formulation of an adaptive dynamic based on (the indi-
vidual’s decision problem from) the NEkS play.2 3 More specifically, a k-player consen-
sual dynamic (kCD) is a family of adaptive dynamic processes where players sequentially
adapt their behaviors and at most k− 1 of their links, of course, subject to the stability
constraints (Proposition 3). In the presence of random preference shocks, kCDs induce a
unique, invariant to k, stationary distribution over the set of all possible outcomes (The-
orem 1). Consistently with the NEkS play, each NEkS network is a local mode of this
probability distribution (Theorem 3). The larger k is, the faster a kCD approaches the
stationary distribution (Theorem 2).

These properties of kCDs facilitate both estimation of and simulation from these
games. The model’s likelihood is given by the (unique) stationary distribution of the
kCD family. This distribution pertains to the Exponential Random Graph Models (Frank
and Strauss (1986), Wasserman and Pattison (1996)), for which both direct estimation
and simulating from the model with known parameters are infeasible.4 Bayesian estima-
tion strategies have utilized an asymptotic algorithm, the so-called double Metropolis–
Hastings sampler, that relies on simulations from the model via Markov chains (Murray,
Ghahramani, and MacKay (2006), Liang (2010), Mele (2017)). While, for different ks,
kCDs have different convergence properties, they have the same stationary distribution
(Theorems 1 and 2), which in turn suggests a transparent template for designing these
Markov chains with varying k (Algorithm Table I and Proposition 4).5

The model is applied to data on smoking behavior, friendship networks, and home
environment (parental education background and parental smoking behavior) from the
National Longitudinal Study of Adolescent Health. This is a longitudinal study of a na-
tionally representative sample of adolescents in the United States, who were in grades
7–12 during the 1994–1995 school year.6

1In a game of size n, there are n− 1 permissible deviations for a player who considers changing the status
of a single link, 3 (n−1)(n−2)

2 for a player who considers changing two of her links, etc.
2See Train (2003, Chapter 2) for an overview of the random utility approach.
3Similar dynamics, although in a different context, are analyzed by the evolutionary game theory and indi-

vidual learning literatures, for example, Foster and Young (1990), Kandori, Mailath, and Rob (1993), Blume
(1993), Jackson and Watts (2001, 2002). In a crude form, the motivation for these dynamics is present in
Cournot (1838, Chapter VII) and Nash (1950, Section 9).

4An evaluation of the likelihood involves sums with 2(n2+n)/2 terms. As n grows, computing such sums quickly
becomes prohibitively time expensive, for example, for n= 10 the number of terms nears 1017.

5Poor convergence properties are associated with local Markov chains, where each update is of size o(n)
(Bhamidi, Bresler, and Sly (2011)). Importantly, varying k on the support {2� � � � � n− 1} is not anymore a local
Markov chain. I thank an anonymous referee for pointing this out.

6Details about these data are available in the Online Supplementary Material.
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The empirical analysis of adolescent smoking and friendship selection delivers a host
of results which are related to the vast empirical research on social interactions and teen
risky behaviors. Typically, empirical studies of peer effects either lack friendship data or
take the friendship network as exogenously given.7 Also, the approaches range from mod-
els that directly relate an individual’s choices to mean characteristics of his peer groups
(e.g., see Powell, Tauras, and Ross (2005) and Ali and Dwyer (2009)) to models with elab-
orate equilibrium microfoundations (e.g., see Brock and Durlauf (2001, 2007), Krauth
(2005), Calvó-Armengol, Patacchini, and Zenou (2009)). In terms of estimates, this paper
is the first assessment of how neglecting the response of the social network to policies
targeting teen risky behaviors can bias the estimates of both the model’s parameters and
the predicted policy outcomes.8 In terms of the determinants of teen risky behaviors, this
paper pioneers the role of the school composition, or more generally the determinants of
the social fabric, in shaping teen decisions.9

1.1. Conclusions From the Empirical Analysis

The model is estimated under various restrictions on the parameter specification and
on the data availability. Two observations merit noting at the estimation stage. First, the
peer effect complementarities are substantially stronger between smokers compared to
those between nonsmokers. Second, lack of network data, which forces the estimation to
suppress the local peer effect externalities, substantially biases downwards the estimate
of the price coefficient.

The obtained sets of estimates are used to perform numerical experiments under var-
ious counterfactual scenarios. The purpose of these experiments is to quantify the re-
sponse of the friendship network to policies targeting adolescent smoking. A by-product
of this analysis is an assessment of the bias in the model’s predictions due to lack of net-
work data or due to various misspecifications.

The first experiment addresses the question of whether the response of the friendship
network is relevant for policies working through changes in tobacco prices. To motivate
this question, compare how individuals respond to a price increase in fixed versus en-
dogenous network environments. There are two effects to consider. The direct effect of
changing tobacco prices is the first-order response and, intuitively, is larger in endoge-
nous network environment where individuals are free to change their friendships. That is,
more individuals are likely to immediately respond to changes in tobacco prices provided
they are not confined to their (smoking) friends. The indirect (ripple) effect of changing
tobacco prices is the effect on smoking which is due, in part, to the fact that one’s friends
have stopped smoking. Contrary to before, the indirect effect is larger in a fixed network
environment because fixed networks are more likely to propel further the changed be-
haviors. That is, an individual who changes her smoking status is bound to exert pressure
to her (fixed) friends who are most likely smokers. It is then an empirical question how
these two opposing effects balance out. Simulations with the full model and with a model
where the friendship network is kept fixed suggest that the direct effect dominates. In

7See, for example, Liu, Patacchini, and Zenou (2014), who distinguish between local aggregate and local
average peer effects, and the references therein.

8It is difficult, if not impossible, to account for the empirical contributions of the large literature on peer ef-
fects and teen risky behaviors. For a small sample of papers obtaining estimates of peer effects, see Chaloupka
and Wechsler (1997), Ali and Dwyer (2009), and the references in CDC (2000, Surgeon General’s Report).

9The possibility of such a role was theorized by Graham, Imbens, and Ridder (2014) and experimentally
discovered by Carrell, Sacerdote, and West (2013).
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other words, following an increase in tobacco prices the response of the friendship net-
work amplifies the intended reduction in smoking prevalence.

The second experiment asks whether school racial composition has an effect on adoles-
cent smoking. When students from different racial backgrounds study in the same school,
they interact and are likely to become friends. Being from different racial backgrounds,
students have different intrinsic propensity to smoke and the question is what is the equi-
librium smoking behavior in these mixed-race friendships: do those who do not smoke
start smoking or those who smoke stop smoking? Simulations from the model suggest
that redistributing students from racially segregated schools into racially balanced schools
decreases the overall smoking prevalence.

The last experiment simulates a small scale policy intervention targeting only a part
of the school’s population. The policy is efficient so that those exposed to the treatment
stop smoking. At the same time, it is not feasible (too costly) to treat the entire school. In
this experiment, the question is when treated individuals return, will their friends follow
their example, that is, extending the effect of the proposed policy beyond the set of treated
individuals, and thus creating a domino effect, or will their pre-treatment friends unfriend
them? In essence, this is a question about the magnitude of the spillover effects and this
study suggests that aggregate spillovers are roughly double compared to the scale of the
policy.

1.2. Related Literature

This paper studies and estimates a game on endogenous network where players choose
both their behaviors (e.g., smoking) and friendship links. The proposed model can be
restricted to a game played on a fixed network. These games date back to the physics
literature of the 1970s and in economics have been analyzed with both discrete and con-
tinuous choices (e.g., see Jackson and Zenou (2015) and Bramoullé and Kranton (2016)
for surveys). Most of the empirically tractable games have been developed either in con-
tinuous settings (e.g., Ballester, Calvó-Armengol, and Zenou (2006), Bramoullé, Kranton,
and D’Amours (2014), Calvó-Armengol, Patacchini, and Zenou (2009)) or when data on
the friendship network is not available, restricting the model further to where peer effects
are measured via group averages (e.g., see Brock and Durlauf (2001, 2007), Nakajima
(2007), and the survey in Blume, Brock, Durlauf, and Jayaraman (2015)).

Symmetrically, the proposed model can be restricted to a network formation game (e.g.,
see Jackson (2008) for a systematic textbook presentation). A large and growing body of
studies on the economics of these games followed Jackson and Wolinsky (1996) who, in
a departure from the traditional noncooperative game paradigm, introduced the notion
of pairwise stability. In this paper, the stability constraints guarantee that any NEkS play
is pairwise stable and for k = n such play is pairwise-Nash (see Myerson (1991), Calvó-
Armengol (2004), Goyal and Joshi (2006), Bloch and Jackson (2006, 2007) and the survey
in Jackson (2005)).

A handful of theoretical papers consider both network formation along with other
choices potentially affected by the network (see Goyal and Vega-Redondo (2005),
Cabrales, Calvó-Armengol, and Zenou (2011), König, Tessone, and Zenou (2014), Baetz
(2015), Lagerås and Seim (2016), Hiller (2017), Jackson (2018)). Importantly, the theo-
retical frameworks available are meant to provide focused insights into isolated features
of networks and deliver sharp predictions, while abstracting from players’ heterogeneity
and so are not easily adapted for the purposes of estimation.
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Econometric models of networks and actions are proposed in Goldsmith-Pinkham and
Imbens (2013), Hsieh and Lee (2016), and Johnsson and Moon (2019) where the deci-
sions to form friendships influence the decision to engage in a particular activity. The fo-
cus of their research, however, is not on policy analysis nor on accounting for the possible
endogenous response of the friendship network to changing the decision environment. In
contrast, the framework proposed in Boucher (2016) is microfounded as a particular equi-
librium in a noncooperative model of friendships and behaviors. Related work by Hsieh,
König, and Liu (2016) proposes a two-stage estimation procedure, with an application to
R and D, which relies on the conditional independence of links obtained from assum-
ing away link externalities. Canen, Trebbi, and Jackson (2016) proposed an empirically
tractable framework, building on Cabrales, Calvó-Armengol, and Zenou (2011), where
politicians choose both socialization and legislation efforts, and study bill cosponsorship
in the U.S. Congress.10 Different to this literature (including Boucher, Hsieh, and Lee
(2019) and Battaglini, Patacchini, and Rainone (2019)), the proposed model is founded
on the explicit strategic incentives that guarantee consent and stability in link formation
in the sense of Jackson and Wolinsky (1996).

Finally, adaptive dynamic and potential function representation, as a dimensionality re-
duction tool, are widely used in (algorithmic) game theory, computer science, and in eco-
nomics of networks for processes on fixed networks, for processes of link formation and,
more recently, for combined processes, for examples, Foster and Young (1990), Blume
(1993), Jackson and Watts (2001, 2002), Nakajima (2007), Bramoullé, Kranton, and
D’Amours (2014), Bourlés, Bramoullé, and Perez-Richet (2017), Mele (2017), Boucher
(2016), and Hsieh and Lee (2016). In contrast to this literature, this paper highlights a
slightly different role for these tools, namely, to probabilistically rank the equilibria of the
static game and to simulate (and estimate) these games.

2. A GAME ON AN ENDOGENOUS NETWORK

Imagine a world where individuals choose both their friends and their behaviors, for
example, to smoke or not. A small scale example is depicted as a graph in Figure 1. In-
dividuals are depicted as nodes and the star-shaped shaded nodes are those who smoke.

FIGURE 1.—An illustration with 3 individuals (players). Note: In the graph, each player in I = {1�2�3} is
depicted as a vertex and a friendship is depicted as an edge, for example, players 1 and 2 are friends. The
star-shaped shaded nodes denote players who smoke tobacco, for example, players 1 and 2 are smokers. In the
notation from Section 2.1, a1 = a2 = 1, a3 = 0, g12 = 1, and g13 = g23 = 0.

10Recent econometric analyses focus on link formation, though these are not easily extendable to include ac-
tion choice as well; for example, see Sheng (2020), Chandrasekhar and Jackson (2016), Leung (2015), de Paula,
Richards-Shubik, and Tamer (2018), Graham (2017), Menzel (2015), Leung and Moon (2021), and the reviews
in Chandrasekhar (2015), de Paula (2016), Bramoullé, Galeotti, and Rogers (2016).
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Friendships are depicted as links between pairs of nodes. These links are undirected be-
cause (being in) a friendship is a symmetric binary relation.

It is worth pausing to list the defining features of individuals’ decision environment.
First, individual’s choices of behavior and friendships are different in that friendships
(unlike behaviors) require consent to form and maintain. This fundamental difference is
embedded in the proposed formalization of individual’s decision problem. Second, there
are likely to be externalities not only between individual’s behavior and the behaviors her
friends but also between individuals’ friendship decisions. These externalities are explic-
itly specified in players’ payoff functions. Finally, this is a complex decision environment
in that even with 100 individuals, each one considers roughly 1030 alternative strategies.
This complexity is reflected in the proposed (family of) equilibria and adaptive dynamics.

The model is developed in two stages. The remainder of Section 2 analyzes agents’
strategic choices in the settings of a static game. Section 3 translates agents’ static decision
problem to the settings of an adaptive dynamic and formally argues that this dynamic
delivers an inferentially convenient approximation of the static play.

2.1. Players and Preferences

Each i, in a finite population I = {1�2� � � � � n}, chooses ai ∈ {0�1} and a set of links gij =
gji ∈ {0�1} for j �= i. In the settings of adolescents’ smoking and friendship decisions, I is
the set of all students in a given high school, ai = 1 if student i smokes, and gij = 1 if i and j
are friends. In the illustration from Figure 1 above, there are 3 players so that I = {1�2�3},
and a1 = a2 = 1, a3 = 0, g12 = 1, and g13 = g23 = 0. A final piece of the description of the
population is individuals’ exogenous characteristics Xi, for example, age, race, gender,
etc.

Player i chooses her behavior and friendships statuses S(i) = (ai� {gij}j �=i) from her
choice set S(i) = {0�1}n to maximize her payoff ui. Let S = (S(1)� � � � � S(n)) ∈ ∏

i S(i) = S
and X = (X1� � � � �Xn) ∈ X. Formally i’s payoff function, ui : S × X −→ R, orders the out-
comes in S given X:

ui(S�X)= aivi + aiφ
∑
j �=i
aj

︸ ︷︷ ︸
aggr. externalities

(1)

+φS
∑
j

gijaiaj +φN
∑
j

gij(1 − ai)(1 − aj)
︸ ︷︷ ︸

local externalities

(2)

+
∑
j

gijwij + qijk
∑
j�k
j<k

gijgjkgki

︸ ︷︷ ︸
clustering

−ψ
(

1
2
(
d2
i + di

) +
∑
j �=i
gijdj

)
︸ ︷︷ ︸

(convex) costi(di� {dj}j:gij=1)

� (3)

where di = ∑
j gij is the degree (total number of links) of i. Here, vi = v(Xi), wij =

w(Xi�Xj) and qijk = q(Xi�Xj�Xk) are functions of agents’ (exogenous) characteristics.
To avoid clutter in the summation ranges, assume that gii is defined and equal to zero for
all i so that, for example, di = ∑

j �=i gij =
∑

j gij .
The first thing to note about the payoff ui is the presence of individuals’ heterogeneity.

The terms in (1)–(3) depend on the exogenous characteristics of i and her friends (e.g.,
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terms vi, wij and qijk) and, also, on the endogenous choices of others in the population
(e.g., j’s smoking status, degree and presence of common friends). A more subtle point to
note, before introducing each payoff term, is that the terms in (1)–(3) can be sorted into
three groups: terms that relate to the incremental payoff of changing ai, terms that relate
to the incremental payoff of changing gij and terms that relate to both.

The first three terms in (1)–(3) relate to the incremental payoff of changing i’s behavior
ai conditional on the friendship network. This incremental payoff is

�aiui(S�X)= vi +φ
∑
j �=i
aj +φS

∑
j �=i
gijaj −φN

∑
j �=i
gij(1 − aj)�

The first term vi is the (exogenous) intrinsic utility of choice ai = 1, which is allowed to
vary with i’s attributesXi. The second termφ

∑
j �=i aj captures the aggregate externalities.

That is, i may be influenced from the behaviors of the surrounding population
∑

j �=i aj ,
provided φ �= 0. The last two terms in �aiui(S�X) are the differential of the local exter-
nalities φS

∑
j gijaiaj +φN

∑
j gij(1 −ai)(1 −aj) in (2). Note that aiaj equals 1 if and only

if ai = aj = 1 so that, conditional on the friendship network, this term captures pressures
on i to follow (or to break away if φS < 0) her friends’ decision to choose 1 (to smoke).
Analogously, (1 − ai)(1 − aj) equals 1 if and only if ai = aj = 0, and this term captures
pressures on i to conform to the behaviors of her choosing 0 (nonsmoking) friends. Be-
cause φS need not equal φN , the opposing conformity pressures from friends who choose
1 and from friends who choose 0 need not be equal in magnitude. Finally, as will be-
come evident shortly, the local externalities terms are related to the incremental payoff
of changing gij where, conditional on individuals’ actions, these terms capture a tendency
to befriend others playing the same action. To sum up, an agent’s utility increases by φS
with every friend who plays the same action if that action is 1, and by φN with every friend
who plays the same action if that action is 0.

The last four terms in (1)–(3) relate to the incremental payoff to i of changing gij con-
ditional on players’ actions. This incremental payoff is

�gijui(S�X)=wij + qijk
∑
k

gikgjk −ψ(di + dj)+φSaiaj +φN(1 − ai)(1 − aj)�

The first term wij captures the (exogenous) utility of a friendship which may depend on
i’s and j’s degree of similarity, that is, same age, race, sex, etc. The next term is the dif-
ferential of qijk

∑
j<k gikgjkgki in (3) which captures link externalities. Mechanically, i may

have preferences for whether or not her friends are friends themselves. In particular, i
may prefer sharing her friends (q > 0), or on the contrary, prefer friendship exclusiv-
ity (q < 0).11 The third term −ψ(di + dj) is the differential of the convex cost term in
(3) which reflects the costs of establishing a friendship between i and j. Properties of
the cost term to note are: (i) the more friends i has, the more costly it is for i to es-
tablish an additional friendship and (ii) the costs are shared so for i it is more costly to
maintain friendships with more popular (high dj) as opposed to less popular (low dj) in-
dividuals. The last two terms relate to the previously discussed local externalities terms
φS

∑
j gijaiaj +φS

∑
j gij(1 − ai)(1 − aj) in (2).

11A compelling interpretation of this term is consistent with the presence of meeting frictions. In particular,
meeting and befriending friends of friends can explain the tendency of individuals to form triangles of friend-
ships (e.g., see Jackson and Rogers (2007)). This paper studies relatively small friendship networks so frictions
are less likely to play a pronounced role.
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2.2. Equilibrium Play

Given a player’s preferences, her observed links and action are likely to compare fa-
vorably against her alternatives. However, the number of available alternatives renders
players’ decision problem complex. In contemplating the optimality of her play, a player
has to consider 2n − 1 possible deviations. A natural way to restrict the alternatives under
consideration is to presume that players consider only strategies that are close by a candi-
date equilibrium play, or in the settings above, that players consider strategies that involve
changing only few link statuses. A final point concerning the equilibrium is that players
are aware that links are formed with consent and subject their choices to this information.

DEFINITION 1: A profile of actions and a network S∗ = ({a∗
i }i∈I� {g∗

ij}i∈I�j∈I\i) is a Nash
equilibrium in a k(-player) stable (NEkS) network, provided S∗

(i) = (a∗
i � {g∗

ij}j∈I\i) is a solu-
tion of i′s decision problem on Ik ⊆ I:

maxai�{gij }j∈Ik\i ui
(
ai� {gij}j∈I\i;S∗

−i
)

(4)

s.t. gij = 1 only if �gijuj
(
ai� {gij}j∈I\i;S∗

−i
) ≥ 0 ∀j ∈ Ik\i� (5)

where 1<k≤ n, Ik = {i} ∪ {i1� � � � � ik−1} and i /∈ {i1� � � � � ik−1}, for all i and Ik.

To state the above definition in words, in a NEkS network no player has permissible, by
the stability constraints (5), and profitable deviation involving changing the statuses of less
than k links. A notable feature of the NEkS networks is that not only links are formed
with consent but also players internalize the need for consent through subjecting their
play to the stability constraints. The stability constraints owe their name to their relation
to the notion of stability introduced in Jackson and Wolinsky (1996) (see Proposition 2
below).

ASSUMPTION 1: Assume that w() and q are symmetric in their arguments/indices.

PROPOSITION 1: With Assumption 1:
1. For any S, k, i, and Ik, the problem in (4)–(5) is well-defined and has a solution;
2. For any k, a NEkS network exists.

The existence of a (nontrivial) solution to individual’s decision problem (4)–(5) and an
equilibrium follows from the existence of a potential function for this game (Monderer
and Shapley (1996)). The proof is in the Appendix (p. 1199).

PROPOSITION 2: With Assumption 1:
1. For k= 2, NEkS networks are pairwise stable;
2. For k= n, NEkS networks are pairwise-Nash networks;
3. For k′ < k, any NEkS network is also a NEk′S network.

Part 1 can be strengthened for any preferences: for k = 2, any NEkS play is pairwise
stable (Jackson and Wolinsky (1996)). For k= n, NEkS networks are pairwise-Nash net-
works (Calvó-Armengol (2004), Goyal and Joshi (2006), Bloch and Jackson (2006, 2007)).
Finally, the NEkS family is ordered by set inclusion so that the existence of a pairwise sta-
ble network is a necessary condition for the existence of a NEkS network for k > 2. The
proof is in the Appendix (p. 1201).
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FIGURE 2.—Examples of NEkS networks for k= 2 and k= 3. Note: Let I = {1�2�3}, φ= q = wij = 0 and
ui = vi +φ0

∑
j gij(aiaj + (1 − ai)(1 − aj))−ψ costi(di� {dj}j∈di ). It is straightforward to find parameter values

for vi , φ0 and ψ where for k= 3 there is a unique NEkS network while for k= 2 both of the depicted networks
are NEkS networks.

2.3. An Example of NEkS Networks With 3 Players

To see how the choice of k may affect the equlibrium networks, consider a simplified
version of payoffs (1)–(3) where all externalities other than the local peer effects and costs
are absent. Let I = {1�2�3}, φ= 0, φS = φN = φ0 > 0, q = 0, ψ> 0, and wij = 0 for all i
and j so that

ui = vi +φ0

∑
j

gij
(
aiaj + (1 − ai)(1 − aj)

) −ψ costi
(
di� {dj}j∈di

)
� (6)

Suppose that: (i) v2 = v̄ and v3 = −v̄ for v̄ large so that players 2 and 3 always choose a2 =
1 (smoke) and a3 = 0 (not smoke), respectively, and (ii) the benefits of having a friend
that plays the same action outweigh the costs (φ0 > 2ψ). With these assumptions, player
1 will always choose to befriend either player 2 or player 3 depending on 1’s smoking
choice.

The candidates for equilibrium are depicted in Figure 2. For k = 3, there is (generi-
cally) a unique NEkS network. If v1 < 0, then player 1 chooses not smoke and befriends
player 2 (Figure 2 left) else (v1 > 0) player 1 chooses to smoke and befriends player 3
(Figure 2 right). In contrast, for k= 2 if v1 ∈ (−φ0 + 2ψ�φ0 − 2ψ) both networks in Fig-
ure 2 are NEkS networks. Note that the larger the complementarities are (φ0), the larger
the region for v1 is where there are multiple NEkS networks.

3. CONSENSUAL DYNAMIC. AN ESTIMABLE FRAMEWORK

The NEkS play offers an intuitive prescription for the outcomes of the forces driving
behaviors and friendships, without specifying the decision process leading to these out-
comes. This abstraction is challenged by strong informational assumptions where players
are presumed to correctly anticipate other players’ choices and, also, by the presence of
multiple NEkS networks none of which can be ruled out a priori. Turning to a frame-
work based on an adaptive dynamic (and random utility) delivers a way to embed this
multiplicity into an inferentially convenient framework.

Formulation (4)–(5) of individuals’ decision problem provides a basis for a simple dy-
namic where behaviors and friendships evolve in a way consistent with the NEkS play.
The general idea that equilibrium might arise from a simple (myopic) adaptive dynamic
as opposed to from a complex reasoning process is very intuitive. In comparison with
the interpretations in Kandori, Mailath, and Rob (1993), Blume (1993), and Jackson and
Watts (2001, 2002), the emphasis is on obtaining an empirically tractable framework via
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a flexible dynamic process (parametrized via k).12 More specifically, this dynamic pro-
cess serves a dual purpose. As a conceptual model of individuals’ behavior, it delivers the
likelihood of a statistical model and justifies the NEkS networks as a highly probable out-
come. As an algorithm template, it facilitates the estimation of and simulation from these
games because if its particular properties.

3.1. k-Player Consensual Dynamic (kCD)

Every period t = 1�2� � � � a randomly chosen individual, say i, considers her behavior
ai and k− 1 of her friendships, say with {i1� � � � � ik−1}, to (myopically) solve her decision
problem (4)–(5) on Ik = {i} ∪ {i1� � � � � ik−1}. A stochastic meeting process μt outputs i
and Ik:

Pr
(
μt = (i� Ik)|St−1�X

) = μi�Ik(St−1�X)� (7)

In the simplest case, any meeting is equally probable and μi�Ik(St−1�X)= 1
n

1(
n−1
k−1

) for all i,
Ik, St−1, and X . Rather, it is only necessary that any meeting is possible.

ASSUMPTION 2: μi�Ik(St−1�X) > 0 for all i ∈ I, Ik, S ∈ S, and X ∈ X.

The sequence of random meetings together with players’ optimal decisions induce a
sequence of network states (St) referred to as a k(-player) consensual dynamic (kCD).

PROPOSITION 3: Fix k ∈ {2� � � � � n}. With Assumptions 1 and 2, for a kCD St :
1. A NEkS network is absorbing, that is, St′ = St if t ′ > t and St is a NEkS network;
2. Independently of the initial state Pr(limt→∞ St ∈ NEkSN)= 1.

Indeed, for any k, the NEkS networks are exactly the rest points of simple adaptive
processes, the kCDs. The proof is in the Appendix (p. 1201).

3.2. kCDs With Random Utility

Consider a modification of a kCD where players’ decision problem (4)–(5) is cast as a
random utility choice.13 More specifically, conditional on the realized meeting i and Ik,
player i’s payoffs for each alternative on Ik are augmented with a random component,
ultimately making the solution of (4)–(5) stochastic. Such a kCD with random utility de-
livers a (stationary) distribution over all outcomes as opposed to a single outcome. This
distribution has convenient properties when treated as the likelihood function of a statis-
tical model.

ASSUMPTION 3: Suppose that the players’ payoffs are given by ui(S�X)+ εS where ui is
defined as before in (1)–(3) and εS is an additive preference shock i�i�d. across time and S.
Moreover, suppose that εS has c.d.f. and unbounded support on R.

ASSUMPTION 4: Suppose that εS has a Gumbel(με�βε) distribution.

12Similar dynamics, although in a different context, are studied by the literature on stochastic stability.
There, either agents take turns to update their strategies (i.e., in our settings, all links) or a pair of players
update the status of their link.

13This is also known as the random utility model. See Thurstone (1927), Marschak (1960), McFadden (1974),
and for textbook treatment, Train (2003, Chapter 2).
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ASSUMPTION 5: Suppose that the meeting probabilities μi�Ik(S�X) do not depend on ai
and gij for all j ∈ Ik. (Alternatively, suppose that μi�Ik(S�X)= μi�Ik(S

′�X) for all S�S′ ∈ S,
which is a slightly weaker condition but less intuitive.)

The sequence of meetings together with players’ (stochastic) choices induce a Markov
chain on S referred to as a kCD with random utility.

THEOREM 1—Stationary Distribution: Fix k ∈ {2� � � � � n}. A kCD with random utility
has the following properties:

1. With Assumptions 2 and 3, there is a unique stationary distribution πk ∈ �(S) for which
limt→∞ Pr(St = S)= πk(S). In addition, for any function f : S → R, 1

T

∑T

t=0 f (St)−→∫
f (S)dπk.

2. With Assumptions 1–5,

π(S�X)∝ exp
(P(S�X)

β

)
� (8)

In particular, π(S�X) does not depend on k.

The first part is not surprising in that it asserts that a kCD with random utility is well
behaved so that standard convergence results apply. The uniqueness of πk precludes de-
pendence between snapshots from this process and its initial state, and the ergodicity
allows one to simulate from πk via drawing a long trajectory of a kCD.

The second part has implications for implementing the model. The stationary distribu-
tion π in (8) does not depend on k, and thus, delivers a tool to unify the equilibria in
the NEkS family. More specifically, π ranks in a probabilistic sense the family of equi-
libria within and across different ks (see Theorem 3). This result bears two immediate
consequences for implementing the model, when π is treated as the likelihood: (a) the
multiplicity of NEkS networks is reconciled and (b) the estimation does not need data
on k. A final implication from part two of the theorem is that a closed-form expression
for π provides for a transparent identification of the model’s parameters14 and facilitates
the use of likelihood-based methods for estimation.

3.3. Speed of Convergence

The kCDs with random utility depend on k despite the invariance of their stationary
distribution to k. Below is a formal statement of a theorem on this dependence and a
discussion of the theorem’s hypothesis, which isolates away all other determinants of the
kCDs with random utility.

THEOREM 2—kCDs Ranking: Suppose that ui(S�X) = 0 for all i, S ∈ S and X ∈ X.
Then the second eigen value of the 2(n2+n)/2-by-2(n2+n)/2 transition matrix of a kCD with ran-
dom utility is given by

λk�[2] = 1
n

(
n− 1 + n− k

n− 1

)
� (9)

In particular, λk′�[2] < λk�[2] for 2 ≤ k< k′ ≤ n so that the k′CD with random utility converges
strictly faster than kCD with random utility.

14For more details on identification, see Section 4.4.
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The hypothesis of Theorem 2 presumes that players do not differentiate between dif-
ferent networks or, equivalently, that all payoff parameters in (1)–(3) are set to equal 0.
To put it another way, the kCDs with random utility traverse in unbiased way the space
of all possible networks S. As a result, in the stationary distribution π the behaviors and
network links are i.i.d. Poisson(0�5) and, importantly, k is the only determinant of kCDs’
transition probabilities and convergence rates.15

There are two rationales behind pursuing a characterization of the speed of conver-
gence of kCDs with random utility. As anticipated (and formally established shortly) π
probabilistically ranks the family of NEkS networks. In a dual fashion, the differential
speed of convergence provides a means to rank the family of kCDs with random utility.
In particular, the larger k is, the smaller is the second eigenvalue λk�[2], that is, the faster
kCDs converge to π (see Debreu and Herstein (1953, Section 4)).

The second reason for why properties of kCDs are of their own interest is highlighted
by Bhamidi, Bresler, and Sly (2011) who show that adaptive dynamic with local updates
(i.e., o(n) links at a time) converges very slowly. Such slow convergence rates could ques-
tion the conceptual treatment of the limiting distribution π as a likelihood. For this same
reason, simulation based methods that rely on local updates may not work in practice
for estimation/simulation of these models.16 Note that kCDs encompass not only local
updates, for example, k= [n/2], and thus suggest a way to avoid the problem of slow con-
vergence (poor approximation). Relatedly, Theorem 2 offers insights into an important
trade-off for sampling design: the Markov chain is facing a trade-off between speed of
convergence and complexity in simulating the next step. For a smaller k, the convergence
to π is slower, however, generating an update is faster because this update is drawn from
a discrete distribution with smaller (2k) support.17

3.4. Discussion

3.4.1. Probabilistic Ranking. The Most Probable Equilibria

The stationary distribution π from Theorem 1 provides an intuitive probabilistic rank-
ing of the family of NEkS networks. In fact, π assigns a positive probability to all possible
outcomes of the game including those that are not equilibria. Consistently with a NEkS
play, the equilibrium has the highest probability among the outcomes in the neighborhood
of that equilibrium. Notably, different NEkS networks are assigned different probabili-
ties and the mode of π, that is, the most probable equilibria, has a special role (see The-
orem 3 below). It is worth pointing out that this approach of working with all equilibria
via an equilibrium ranking is a departure from the theoretical literature on equilibrium
selection from evolutionary game theory.

The neighborhood of an outcome S ∈ S is given by the set of all outcomes that differ by
the status of a single link or the action from S:

N(S)= {
(gij� S−ij) : i �= j� gij ∈ {0�1}} ∪ {

(ai� S−i : ai ∈ {0�1}}�
15In general, the shape of the potential, that is, the terms of the potential function, and the geography of

the network X will likely influence the speed of convergence. To the best of my knowledge, treatment of the
general case remains out of reach.

16See the discussion in Chandrasekhar and Jackson (2016).
17Relatedly, there is an important computational shortcut when simulating from a kCD. Within the MH

algorithm for generating the update of a kCD, computing the acceptance probability scales only quadratically
with the size of the network because it is enough to compute the change in utility as opposed to the potential
itself. The replication code of the paper contains further details.
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THEOREM 3: Suppose Assumptions 1–5 hold.
1. A state S ∈ S is a Nash equilibrium in a pairwise stable network iff it receives the highest

probability in its neighborhood N.
2. The most likely network states Smode ∈ S (the ones where the network spends most of its

time) are pairwise Nash networks.

3.4.2. Random k

Consider what appears to be a very unrestrictive meeting process, where every period
a random individual meets a set of potential friends of random size and composition. Let
k be a discrete process with support {2� � � � � n} and augment the meeting process with an
additional initialization step with respect to the size k. At each period, first k is realized
and then Ik is drawn just as before. It is straightforward to establish, without additional
assumptions on the process k, that this random k-kCD with random utility has the same
stationary distribution π as the one from Theorem 1.18 This is yet another demonstration
that the model is agnostic to the meeting patterns (which are typically not observed).

4. DATA AND ESTIMATION

4.1. The Add Health Data

The National Longitudinal Study of Adolescent Health contains data on a sample of
adolescents in grades 7–12 in the United States in the 1994–1995 school year. The sam-
ple is representative of US schools with respect to region of country, urbanicity, school
size, school type, and ethnicity. In total, 80 high schools were selected together with their
“feeder” schools. The students were first surveyed in-school and then at home in four
follow-up waves conducted in 1994–1995, 1996, 2001–2002, and 2007–2008. This paper
makes use of Wave I of the in-home interviews with students enrolled in the schools from
the so-called saturated sample. Only for schools from the saturated sample, all of their
students were eligible for in-home interviews.

The in-home interviews contain rich data on students’ behaviors, home environment,
and friendship networks. These data are merged with administrative data on the average
price of a carton of cigarettes from the American Chamber of Commerce Research As-
sociation (ACCRA). ACCRA’s data are linked to the Add Health data on the basis of
state and county FIPS codes for the year in which the data were collected. Additional
details about the estimation sample including sample construction and sample statistics
are presented in the Online Supplementary Material (Badev (2021)).

4.2. Bayesian Estimation

The kCDs with random utility deliver a unique stationary distribution π which can be
thought of as the likelihood of a statistical model. Because no information is available on
when the process started or on its initial state, the best prediction about the current state
is given by π. For a single observation S ∈ S, the likelihood is19

p(S|θ)= exp
{
Pθ(S)

}
Hθ

� (10)

18A formal statement and a proof are omitted because these follow the ones of Theorem 1.
19In the expression for π from Theorem 1, the coefficient β is normalized to equal 1 because P is linear in

the utility parameters so that β cannot be separately identified.
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TABLE I

VARYING k DOUBLE M-H ALGORITHM

Input: initial θ(0), number of iterations T , size of the Monte Carlo R, data S

1� for t = 1 � � � T
2� Propose θ′ ∼ q(θ′;θ(t−1)� S)
3� Initialize S(0) = S
4� for r = 1 � � �R
5� Draw k∼ pk(k)
6� Draw a meeting Ik = {i} ∪ {i1� � � � � ik−1} ∼ μk
7� Propose S′ where (ai� {gij}j∈Ik ) are drawn from qμ(S

′|S(r−1); (i� Ik))
8� Compute ā= exp{Pθ′ (S′)}

exp{Pθ′ (S(r−1))}
Q(S(r−1) |S′ ;pk�qi�Ik )
Q(S′ |S(r−1);pk�qi�Ik )

9� Draw a∼ Uniform[0�1]
10� If a < ā then S(r) = S′ else S(r) = S(r−1)

11� end for [r]
12� Compute ā= q(θ(t−1);θ′)

q(θ′ ;θ(t−1))

p(θ′)
p(θ(t−1))

exp{P
θ(t−1) (S

(R))}
exp{P

θ(t−1) (S)}
exp{Pθ′ (S)}

exp{Pθ′ (S(R))}
13� Draw a∼ Uniform[0�1]
14� If a < ā then θ(t) = θ′ else θ(t) = θ(t−1)

15� end for [t]

where Pθ is the potential (evaluated at θ) and Hθ = ∑
S∈S exp{S} is an (intractable) nor-

malizing constant. In practice, Hθ cannot be computed directly even for small n, for ex-
ample, for n= 10 this summation includes 255 ≈ 1017 terms.20

The estimation draws from the Bayesian literature on approximating intractable likeli-
hoods (Murray, Ghahramani, and MacKay (2006), Liang (2010), Mele (2017)), modified
with sampling from a random k-kCDs with random utility. The posterior sampling al-
gorithm is exhibited in Table I. In the original double M-H algorithm, an M-H sampling
of S from πθ(S) is nested in an M-H sampling of θ from the posterior p(θ|S). The new
piece in Table I is the random k in step 5. Theorem 2 suggests that varying k improves the
convergence while Theorem 1 demonstrates that this leaves the stationary distribution
unchanged. The validity of the proposed modification is demonstrated below.

PROPOSITION 4—Varying k Double M-H Algorithm: Let 1 < k ≤ n and suppose As-
sumptions 1–5 hold. If in the algorithm of Table I, the proposal density conditional on meeting
(i� Ik), qμ(S′|S; (i� Ik)) is symmetric, then the unconditional proposal Q(S′|S) is symmetric.
In particular, the acceptance probability of the inner M-H step does not depend on pk or qμ.

The Bayesian estimator requires specifying prior distributions and proposal densities.
All priors p(θ) are normal and all proposals (pk, μ, and qμ) are uniform over their re-
spective domains.

4.3. Parametrization

The payoffs from (1) and (2) have six sets of parameters: vi, wij , q, φ, φS , and
φN . In the empirical specification, the first three are functions of the data vi = V (Xi),

20The specific form of the likelihood pertains to the exponential family, whose application to graphical
models has been termed as Exponential Random Graph Models (ERGM). See Frank and Strauss (1986) and
Wasserman and Pattison (1996).
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wij = W (Xi�Xj), qijk = q(Xi�Xj�Xk). Careful scrutiny of the data and extensive exper-
imentation with various parametrizations motivate the final specification, which is dis-
cussed in the Online Supplementary Material (Badev (2021)).

4.4. Identification

Because the model pertains to the exponential family, identification within the frame-
work of many networks follows immediately. Indeed, a corollary of Theorem 1 is that the
likelihood of the model is proportional to exp{∑R

r=1 θiwi(S�X)}, where wi : S × X −→ R

are functions of the data. To obtain identification, it is enough that the sufficient statistics
wi are linearly independent functions on S × X (e.g., see Lehmann and Casella (1998) for
a textbook treatment). In the structural model, this condition is readily established.21

Unobservable Heterogeneity

In addition to the models’ parameters for observable attributes, it is possible to in-
corporate unobserved agents’ specific types τi ∼ N(0�σ2

τ ) which may influence both the
incremental payoff of a friendship and the incremental payoff of smoking. An intuitive
example is adding a term

∑
j |τi − τj|gij to W (·� ·) and a term ρττiai to V (·). In this case,

the likelihood has to integrate out �τ:

p(S|θ)=
∫

�τ

exp
{
Pθ(S� �τ

}
∑
Ŝ

exp
{
Pθ(Ŝ� �τ)

}φ(�τ)d�τ�

There are a couple of approaches to discuss the identification of ρτ and σ2
τ . From

a Bayesian perspective, identification obtains as long as the data provides information
about the parameters. Even a weakly informative prior can introduce curvature into the
posterior density surface that facilitates numerical maximization and the use of MCMC
methods. However, the prior distribution is not updated in directions of the parameter
space in which the likelihood function is flat (see An and Schorfheide (2007)). From a
frequentist perspective, the heuristic identification argument goes as follows. Friends who
are far away in observables, must have realizations of the unobservables very close by, that
is, small |τi − τj|. If in the data those friends tend to make the same smoking choices then
it must be the case that ρτστ is large. However, formalizing this argument is not imme-
diate and may depend on specific parametric assumptions, and so it is left for the future.

4.5. Estimation Results

Table II presents model’s estimates (the posterior means) for four different estimation
scenarios: (i) without network data, (ii) with fixed network, (iii) without peer effects and
(iv.) the full model. The estimates have been transformed for ease of interpretation to

21Most of the parameters are identified in the asymptotic frame where the size of the network grows to
infinity (as opposed to the number of networks going to infinity). For example, turning off the externalities
(φ= 0, φS = 0, φN = 0, q= 0, ψ= 0) implies that both smoking and friendships are independently distributed
so that standard LLNs apply in the single large network asymptotics.
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TABLE II

PARAMETER ESTIMATESa

Parameter Prior No Net Data Exog Net No PE Model

Utility of Smoking
Baseline probability of smoking 0�20 0.12 0.17 0.21 0.18

(0�10) [0�10�0�15] [0�15�0�20] [0�19�0�23] [0�15�0�22]
Price × 100 −0�50 −0�17 −0�21 −0�61 −0�24

(1�00) [−0�36�0�01] [−0�42�0�01] [−0�87�−0�37] [−0�48�−0�01]
Mom edu (HS&CO)MP −0�05 −0�04 −0�05 −0�05 −0�05

(0�05) [−0�05�−0�02] [−0�06�−0�03] [−0�07�−0�03] [−0�07�−0�03]
HH smokesMP 0�10 0.11 0.13 0.16 0.14

(0�10) [0�08�0�13] [0�11�0�16] [0�13�0�18] [0�11�0�17]
Grade 9+MP 0�20 0.18 0.16 0.24 0.16

(0�20) [0�14�0�21] [0�12�0�20] [0�20�0�28] [0�11�0�20]
BlacksMP −0�20 −0�30 −0�30 −0�35 −0�31

(0�20) [−0�34�−0�26] [−0�35�−0�26] [−0�39�−0�31] [−0�37�−0�26]
30% of the school smokesMP 0�05 0.07 0.05 0.05

(0�10) [0�06�0�08] [0�04�0�07] [0�03�0�08]
Utility of Friendships

Baseline number of friends 3�00 4.63 3.40
(2�00) [4�09�5�29] [2�88�3�88]

Different sexMP% −0�70 −0�72 −0�72
(0�50) [−0�77�−0�67] [−0�77�−0�66]

Different gradesMP% −0�70 −0�89 −0�89
(0�50) [−0�92�−0�86] [−0�92�−0�86]

Different raceMP% −0�50 −0�33 −0�39
(0�50) [−0�58�−0�08] [−0�56�−0�24]

Cost/Economy of scale 0�00 −0�21 −0�22
(0�50) [−0�24�−0�18] [−0�24�−0�19]

TrianglesMP% 0�00 1.18 1.22
(2�00) [0�93�1�45] [0�98�1�45]

φMP
smoke 0�05 0.04 0.05

(0�05) [0�04�0�05] [0�04�0�06]
φMP

nosmoke 0�05 0.03 0.04
(0�05) [0�03�0�04] [0�03�0�05]

aNote: All priors are normal distributions with mean and std displayed in the column Prior. The posterior sample contains 105

simulations before discarding the first 20%. Each cell displays the posterior mean and the shortest 90% credible set. MP stands for the
estimated marginal probability in percentage points and MP% for estimated marginal probability in percent, relative to the baseline
probability.

baseline probabilities, marginal probabilities (MP in ppt) and relative marginal probabili-
ties (MP% in pct).22 It is worth pointing out that the estimate for the price coefficient does
not vary much in magnitude (but only in significance). The point estimates in Table II
together with the posterior distributions of this parameter in Figure 3 suggest that the
largest biases arise when peer effects terms are omitted (column “No PE”) or when the
econometrician does not have data on the friendship network (column “No Net Data”).
Nevertheless, it is difficult to interpret the magnitudes of these differences nor the mag-
nitudes of the structural estimates altogether. In particular, the reported marginal effects

22Details about this reparametrization are available in the Online Supplementary Material.
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FIGURE 3.—Posterior distribution for the price parameter. Note: The hypotheses for equal means between
the model’s posterior and each of the other posteriors on the plot are rejected with p< 0�01 by t-tests.

represent a first-order response and do not take into account the overall equilibrium ad-
justments of the entire system.23

A final point on the estimation results is that the peer effect externalities differ substan-
tially in magnitude between smokers compared to those between nonsmokers. Figure 4
reveals that the former are much stronger than the latter (see footnote 23).

FIGURE 4.—Posterior distribution for the local PE parameters. Note: The hypotheses for equal means and
equal distributions between the parameters for peer effects among smokers φS and among nonsmokers φN
are rejected with p< 0�01.

23A related point is that the parameter φS cannot be interpreted as the effect on the likelihood of smoking
from a randomly assigned friend who is a smoker because, in the model, individuals cannot be forced into
friendships. Rather, individual’s utility increases with φS (or φN ) with every instance where her choice to
smoke (or not) and her choice of a friend are such that she and this friend of hers both smoke (or not).
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TABLE III

THE EFFECT ON SMOKING RATE FROM CHANGES IN THE PRICE OF
TOBACCOa

Price Increase Model Exog Net No Net Data

20 2�5 2�2 1�3
40 4�7 4�2 2�6
60 6�9 6�1 3�9
80 8�7 7�9 5�1

100 10�3 9�4 6�2
120 11�8 10�9 7�4
140 13�1 12�3 8�4
160 14�3 13�5 9�5

aNote: The first column shows proposed increases in tobacco prices in cents. The average
price of a pack of cigarettes is $1.67 so that 20 cents is approximately 10%. The second through
fourth columns show the predicted increase in the overall smoking (baseline 41%) in ppt from
the full model, from the model when the friendship network is fixed, and from the model when
no social network data is available (i.e., φS =φN = 0).

5. POLICY EXPERIMENTS

5.1. Changes in the Price of Tobacco

The estimated model serves as a numerical prototype for the equilibrium adjustments
to various policy interventions. Table III presents simulated increases in tobacco prices
ranging from 20 to 160 cents (in the sample tobacco prices average at $1�67 for a pack) and
their effect on the overall tobacco smoking rates for the sample. The table compares the
predictions from the full model to those from the model when agents are restricted from
adjusting their friendship links and those from the model when data on the friendship
network are not available.

As seen in Table III, smoking rates responds to price changes. Comparison between
model’s predictions with and without friendship adjustments (columns 2 and 3) reveals
that the latter underestimates the mean response by around 15%. In addition, the model
without friendship choices underestimates the variance of this response as well (see Fig-
ure 5). Finally, lack of network data (forcing the restriction φS =φN = 0) leads to a bias
in the mean response to price changes that is between 50% and 70% of the prediction of
the full model.

This analysis suggests that the freedom of breaking friendships and changing smok-
ing behavior induces slightly larger decreases in overall smoking compared to a situation
when individuals are held in their existing (fixed) social networks. Figuratively, a price
change has two effects on the decision to smoke: the direct effect operates through chang-
ing individuals’ exogenous decision environment and the indirect/spillover effect operates
through changing the peer norm, which then puts additional pressure on the individuals’
to follow the change. When comparing the endogenous to fixed network, the direct effect
is likely to be stronger in the former environment while the indirect effect is likely to be
stronger in the latter environment. This study suggests that quantitatively the direct effect
dominates in shaping the overall equilibrium adjustments.24

24It is interesting to relate this finding to the theoretical analysis in Jackson (2018) who argues that variability
in individuals’ popularity (degree in a social network) leads to biased perceptions for the social norm which
in turn leads to higher levels of activities compared to a situation when there is no variability in individuals’
popularity. This counterfactual experiment hints to such an amplification mechanism.
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FIGURE 5.—Distribution of the effect on smoking rate from selected price changes. Note: In the model with
exogenous friendships, the distribution of the predicted smoking rates underestimates both the mean smoking
rates (Table III) and the amount of uncertainty associated with the policy intervention (i.e., the variance of the
distribution) as compared with the full model. The Appendix provides statistical tests for these differences.

5.2. Changes in the Racial Composition of Schools

Suppose that in a given neighborhood there are two racially segregated schools: “White
School” consisting of only white students and “Black School” consisting of only black stu-
dents. One would expect that the smoking prevalence in White School is much higher
compared to Black School because, in the sample, black high students smoke three times
less than white high school students. Consider a policy aiming to promote racial desegre-
gation, which prevents schools from enrolling more than x percent of students of the same
race. If such policy is in place, will students from different races form friendships and will
these friendships systematically impact the overall smoking in one or another direction?

One of the racially balanced schools in the sample is used to evaluate the effect of this
policy.25 In particular, the Whites and the Blacks from this school serve as prototypes for
the White School and Black School, respectively. To implement the proposed policy, a
random set of students from the White School is swapped with a random set of students
from the Black School. For example, to simulate the effect of a 70% cap on the same-race
students in a school, a swap of 30% is simulated.

Table IV presents the simulation results, which suggest that racial composition affects
the overall smoking prevalence. The first column shows the proportion of students being
swapped. The second, third, and fourth columns show the simulated smoking prevalence
in the White School, Black School, and both, respectively. The table suggests that overall
smoking prevalence is lower when schools are racially balanced, thus supporting policies
promoting racial integration in the context of fighting high smoking rates.26

25The school has 150 students of which 40% are Whites and 42% are Blacks. It incorporates students from
grades 7 to 12. From these, the simulations use students from grades 10 to 12 because older students are more
likely to form meaningful friendships and to smoke.

26The statistical power of these predictions is examined in the Online Supplementary Material.
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TABLE IV

THE EFFECT ON SMOKING RATES FROM SAME-RACE STUDENTS
CAPSa

Same Race
Cap (%)

School
White

School
Black Overall

None 32.9 4�5 18.7
90 29.2 6�7 17.9
80 25.6 9�3 17.4
70 23.6 11�1 17.4
60 18.8 15�0 16.9
50 17.0 16�8 16.9

aNote: A cap of x% same-race students is implemented with a swap of (100 −
x)% students. The last column shows the predicted changes in overall smoking under
different same-race caps. The policy induces statistically significant changes in the
overall smoking as suggested by the statistical tests in Appendix D.

It is important to note that the simulations here offer only suggestive evidence on the
role of racial desegregation on the overall prevalence of smoking. There are many factors,
for example, the profile of all observables for the entire schools (income, home environ-
ment, tobacco price, etc.), that are likely to influence the outcome of desegregation. Un-
fortunately, the Add Health data does not have much variation in those factors and the
counterfactual analysis relies on the only racially balanced school in the data. The author
hopes this study to stimulate further research into this question.

5.3. Aggregate Effects of an Antismoking Campaign

The last experiment considers the effects of an antismoking campaign that can prevent
with certainty a given number of students from smoking. An example of such intervention
is a weekend-long information camp on the health consequences of smoking. Assuming
that the camp is very effective in terms of preventing students from smoking but it is too
costly to enroll all students in this camp, the question is once the “treated students” come
back will their smoking friends follow their example and stop smoking, or will their friends
unfriend them and continue smoking?

Table V presents the simulation results with two schools that feature smoking rates
at the sample mean. The table suggests that an antismoking campaign may have a large
impact on the overall prevalence of smoking, without necessarily being able to directly
engage a large part of the student population. In particular, the multiplier factor—the
ratio between the actual effect and effect constrained to the treated sub-population—
indicated a substantial spillover effects reaching up to the factor of 2. These spillover
effects operate through the social network, from those who attended the camp to the rest
of the school.

6. CONCLUDING REMARKS

Individuals may respond differently to changes, with some following their friends’ be-
haviors and others breaking away from their old friends in a search for new friends that
will accept their new behaviors. The choice of a friend fundamentally differs from the
choice of behaviors and, moreover, modeling both choices simultaneously generates com-
plex mathematical structures. In the proposed equilibrium, players internalize the need
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TABLE V

SPILLOVERSa

Campaign (%) Smoking
Predicted Effect

Proportional
Actual
Effect Multiplier

– 42.1 – –
3 39.6 1�3 2�6 2.0
5 38.2 2�1 3�9 1.9

10 34.6 4�2 7�5 1.8
20 28.7 8�4 13�4 1.6
30 23.5 12�6 18�6 1.5
50 15.1 21�1 27�0 1.3

aNote: The first column lists the various treatment rates (proportion of treated).
The second and third columns display the smoking rate and the change in smoking
rate, respectively, if only treated were to stop smoking (i.e., a baseline without peer
effects). The fourth column reports the overall equilibrium effect. Finally, the last
column displays the multiplier computed as the ratio between columns 3 and 4. Note
that the treatment is random and does not target smokers. The policy is simulated 103

times, where each time a new random draw of attendees is being considered.

for consensus in forming friendships and choose their optimal strategies on subsets of k
players, that is, considering the optimality of only a few friendships at a time—a form
of bounded rationality. The k-player consensual dynamic—an adaptive dynamic where
players are constrained to forming friendships with consent—delivers a probabilistic rank-
ing of the proposed equilibria, and via a varying k, facilitates the implementation of the
model.

The model is used to empirically study adolescents’ smoking and friendships selection.
The estimation results suggest that: (a) peer effect complementarities between smokers
are substantially stronger than those between nonsmokers, and (b) lack of social network
data biases substantially the estimates for the marginal effect of tobacco price on ado-
lescent smoking. Counterfactual analysis with the estimated model suggests that: (a) the
response of the friendship network to changes in tobacco price amplifies the intended
effect of price changes on smoking, (b) racial desegregation of high schools decreases
the overall smoking prevalence, and (c) the equilibrium effects from small scale policies
targeting individuals’ smoking choices are roughly double compared to the scale of these
policies.

Overall this paper formulates an avenue to study the complementarities and coordina-
tion in live social networks, that is, social networks that adapt to the behaviors of individu-
als. The literature has just started to understand the forces present in these environments
(e.g., see Jackson (2018)) while the empirical investigation of many hypotheses remains
for the future (e.g., see Carrell, Sacerdote, and West (2013), Graham, Imbens, and Ridder
(2014)).

APPENDIX: PROOFS

PROOF OF PROPOSITION 1 (ON P. 1186): The trivial solution is always feasible w.r.t. the
stability constraints (5) and so the domain of maximization (4) is nonempty. Further, the
hypothesis implies the existence of a nontrivial solution. Note that �gijui()= �gijuj(). This
property of the preferences implies that the unconstrained maximum in (4) is feasible
w.r.t. the stability constraints (5). That is, for any i and Ik = {i}∪ {i1� � � � � ik−1} the solution
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of individual’s decision problem (4)–(5) is simply

argmax
ai�gij
j∈Ik\i

P(S)� (4)

This completes the proof of part one.
For part two, the first step is to extend the property �gijui() = �gijuj() to a deeper

property of the preferences namely that the preferences of all players can be expressed
by a single potential function.27 Indeed, consider P : S × Xn −→ R:

P(S�X)=
∑
i

aiv(Xi)+ 1
2

∑
i�j

gijw(Xi�Xj)

+ 1
2
φ

∑
i�j;i �=j

aiaj + 1
2
φS

∑
i�j

gijaiaj + 1
2
φN

∑
i�j

gij(1 − ai)(1 − aj)

+ 1
6

∑
i�j�k

q(Xi�Xj�Xk)gijgjkgki�

where i �= j is dropped from the summation ranges where possible because the convention
that gii is defined and equals to 0 for all i so that

∑
i�j;i �=j gij = ∑

i�j gij . To show that P is
potential, it is sufficient to verify that (using Assumption 1):

�aiui()= vi +φ
∑
j �=i
aj +φS

∑
j �=i
gijaj −φN

∑
j �=i
gij(1 − aj)

= �aiP()�

�gijui()= wij + q(Xi�Xj�Xk)
∑
k

gikgjk

−ψ(di + dj)+φSaiaj +φN(1 − ai)(1 − aj)
= �gijP()�

Next, fix k ∈ {2� � � � � n} and consider the following adaptive dynamic on S. Every period
draw at random i and Ik (from the uniform distributions over their respective domains),
and let i choose in her argmax (4). For this dynamic, the value of the potential is non-
decreasing so, invoking a submartingale convergence argument, the potential converges.
Unless two states have the same potential (generically false), this implies that the state
converges to a particular network which is, of course, a NEkS network. This same tech-
nology appears in the proof of Proposition 3. Q.E.D.

As it will be useful later on, Proposition 5 states the equivalence between individual’s
decision problem (4)–(5) and the unconstrained maximization (4). The proof of the if
direction follows closely that of the only if direction above, and is omitted.

27The existence of potential implies �gij ui()= �gij uj() but the converse is not true.
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PROPOSITION 5: Fix k ∈ {2� � � � � n}. S∗ is a NEkS network iff ∀i� Ik = {i} ∪ {i1� � � � � ik−1},(
a∗
i � g

∗
ij

)
j∈Ik\i ∈ argmax

ai�gij
j∈Ik\i

P
(
(ai� gij)j∈Ik\i;S∗

−(ai�gij )j∈Ik\i
)
�

PROOF OF PROPOSITION 2 (ON P. 1186): For k = 2, definition 1 directly implies that a
NEkS network is pairwise stable. Note that this observation is independent of the partic-
ular payoff structure here.

Let k = n. That a NEkS network is pairwise stable follows from part 3 of this propo-
sition (demonstrated next). To see that a NEkS network S∗ is a Nash network, consider
the following strategies in a normal form link-announcement game (given the equilib-
rium behavior �a∗): each player announces his NEkS links. Proceeding by contradiction,
for if a player has a profitable deviation then it would be possible to construct (appending
a∗
i ) an S(i) which she prefers to her NEkS play S∗

(i). Therefore, S∗
(i) /∈ argmax ai�gij

j∈Ik\i
ui(S) =

argmax ai�gij
j∈Ik\i

P(S), which contradicts Proposition 5.

Finally, the characterization from Proposition 5 directly implies part 3. In particu-
lar, if k′ < k, Ik′ ⊂ Ik and (a∗

i � g
∗
ij)j∈Ik\i ∈ argmax ai�gij

j∈Ik\i
P((ai� gij)j∈Ik\i;S∗

−(ai�gij)j∈Ik\i ) then

(a∗
i � g

∗
ij)j∈Ik′ \i ∈ argmaxai�gij

j∈Ik′
P((ai� gij)j∈Ik′ \i;S∗

−(ai�gij )j∈Ik′ \i
). Q.E.D.

PROOF OF PROPOSITION 3 (ON P. 1188): That any NEkS network is absorbing for the
kCD follows from Definition 1. The second part follows from observing that Pt is a sub-
martingale, that is, E[Pt+1|St] ≥ Pt , so that {Pt} converges almost surely. Because the
network size is finite it follows that {Pt} is constant for large t and, generically, the same
holds for St , that is, St = S∗ for large enough t. Because of Assumption 2 (any meeting is
possible), this can happen only if S∗ is a NEkS network. Q.E.D.

PROOF OF THEOREM 1 (P. 1189): The first part follows from standard results on con-
vergence of Markov chains. In particular, k-CDs with random utility induce a finite state
Markov chain which, with Assumptions 2 and 3, is irreducible, positive recurrent, and
aperiodic. This is sufficient to obtain the conclusion of part 1.

For the second part, it is enough to show that

Pr
(
S′|S;k)

exp
{
P(S)

} = Pr
(
S|S′;k)

exp
{
P

(
S′)}� (11)

where Pr(S′|S;k) is the one step transition probability for moving from S to S′.
There are two cases to consider: Pr(S′|S;k) = 0 and Pr(S′|S;k) > 0. Suppose that

Pr(S′|S;k) = 0. In this case, the hypothesis guarantees that S and S′ differ in the play
of more than one player. Therefore, Pr(S|S′;k)= 0 and, trivially, (11) holds.

Consider the case Pr(S′|S;k) > 0. Let MS′|S;k be the set of all possible meetings that can
result in transitioning from S to S′. Note that MS′|S;k is empty for some triples (S, S′, k).
Also, Pr(S′|S;k) > 0 implies MS′ |S;k �= ∅.

Let us pause with an example of this notation. Given the triple (S, S′, k),

Pr
(
S′|S;k) =

∑
μ∈MS′ |S;k

Pr(μ)
exp

{
ui

(
S′)}∑

Ŝ∈Nk(μ�S)

exp
{
ui(Ŝ)

} �
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where Nk(μ�S) stands for all states that can result from state S and meeting μ. Here,
the well known expression for the logit choice probabilities (once the meeting is fixed)
follows from Assumption 4 on the distribution of the error term. Suppose that S and S′

agree on all {gij}i �=j but differ in ai for some i, say S = (ai = 0� S−ai) and S′ = (a′
i = 1� S−ai).

For such S and S′, MS′|S;k is the set of all possible meeting tuples (i� Ik−1) where player
i meets different {i1� � � � � ik−1}, and the size of MS′|S;k is

(
n−1
k−1

)
. Further, assume that all

meetings are equally likely and that individuals are indifferent to all outcomes (i.e., as
in the hypothesis of Theorem 2, ui(S�X) = 0 for all i, S ∈ S and X ∈ X). With these
assumptions, Pr(μ)= 1

n
1(
n−1
k−1

) and exp{ui(S′)}∑
Ŝ∈Nk(μ�S)

exp{ui(Ŝ)}
= 1

2k
, and the example is complete with

Pr
(
S′|S;k) =

(
n− 1
k− 1

)
1

n

(
n− 1
k− 1

) 1
2k

= 1
n2k

�

Recall that Nk(S�μ)⊂ S denotes the set of all possible states that can result from the
meeting μ following a state S. The proof of (11) in the case of Pr(S′|S;k) > 0 follows from
the following observations.28

LEMMA 1: For all k, S, S′, and μ= (i� Ik−1):
(i) MS′ |S;k = MS|S′;k for all S�S′ ∈ Sn;

(ii) S′ ∈ Nk(μ�S) iff S ∈ Nk(μ�S
′);

(iii) If S′ ∈ Nk(μ�S) then Nk(μ�S)= Nk(μ�S
′).

Part (i) asserts that each meeting that can result in transitioning from S to S′ may result
in transitioning from S′ to S as well (provided the starting state were S′). Part (ii) restates
this observation in terms of the neighborhoods of S and S′ given a meeting μ. Finally, part
(iii) notes that if a meeting μ could result in S transiting to S′, then the set of all feasible
states following μ and S coincides with the set of all feasible states following μ and S′.

From Lemma 1, the one step transition probability can be written as

P(S)Pr
(
S′|S;k) = P(S)

∑
μ∈MS′ |S;k

Pr(μ)
exp

{
ui

(
S′)}∑

Ŝ∈Nk(μ�S)

exp
{
ui(Ŝ)

}

= P(S)
∑

μ∈MS|S′;k

Pr(μ)
exp

{
P

(
S′)}∑

Ŝ∈Nk(μ�S′)

exp
{
P(Ŝ)

}

= P(S′)Pr
(
S|S′;k)

�

The expression for logit choice probabilities follows from Assumption 4 on the distri-
bution of the error term. In that expression, substituting with P() for ui() follows from
Assumption 1 which guarantees the existence of a potential. Q.E.D.

28The proof of Lemma 1 involves basic reasoning and is omitted. The challenging part is to state and inter-
pret the lemma. Formal proof available upon request.
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PROOF OF THEOREM 2 (P. 1189): Because there is no natural ordering of S, use func-
tions as opposed to vectors in the eigenproblem. For I ⊂ {(i� j) : i ≥ j}, define eI : S → R

as
eI(S)=

∏
i �=j∈I

(−1)gij
∏
i=j∈I

(−1)ai

with e∅(S)= 1 for all S. Next, define

λk�I =

∑
i∈{i:(i�i)/∈I}

(
n− 1 − |Ii|
k− 1

)

n

(
n− 1
k− 1

)

where Ii = {j : (i� j) ∈ I� i �= j}.
LEMMA 2: There are 2n(n+1)/2 pairs of (λk�I�ek�I) such that:
(i)

∑
S ek�I(S)ek�I′(S)= 0 if I �= I ′ and

∑
S ek�I(S)ek�I(S)= 2n(n+1)/2;

(ii)
∑

S′ Pr(S′|S;k)eI(S′)= λk�IeI(S) for all S ∈ S.

To demonstrate part (i), suppose that I �= I ′ and let Ĩ = I\I ′ ∪ I ′\I �= ∅. Now note that∑
S ek�I(S)ek�I′(S)= ∑

S ek�Ĩ(S)= 0. The rest is trivial to verify. For part (ii), write∑
S′

Pr
(
S′|S)eI

(
S′) =

∑
S′

∑
μ

Pr(μ)Pr
(
S′|S�μ)

eI
(
S′) (12)

=
∑
S′

∑
μ∈{μ∩I=∅}

Pr(μ)Pr
(
S′|S�μ)

eI
(
S′) (13)

+
∑
S′

∑
μ∈{μ∩I �=∅}

Pr(μ)Pr
(
S′|S�μ)

eI
(
S′) (14)

=
∑
S′

∑
μ∈{μ∩I=∅}

Pr(μ)Pr
(
S′|S�μ)

eI
(
S′)� (15)

Terms (14) vanish because μ is such that {(i� i)� (i� i1)� � � � � (i� ik−1)} ∩ I �= ∅. Indeed, for∑
S′∈Nk(S�μ)

Pr(S′|S�μ)eI(S′) in half of the 2k terms eI(S′)= eI(S) while for the other half
eI(S′)= −eI(S), implying

∑
μ∈{μ∩I �=∅}

∑
S′∈Nk(S�μ)

Pr(S′|S�μ)eI(S′)= 0.
In summation (15), eI(S) = eI(S′) for all S′ ∈ Nk(S�μ) because μ is such that

{(i� i)� (i� i1)� � � � � (i� ik−1)} ∩ I = ∅. Also, Pr(μ) = 1

n

(
n−1
k−1

) and
∑

S′ Pr(S′|S�μ) = 1. There-
fore, continuing with summation (15),∑

Pr
(
S′|S)eI

(
S′) = eI(S)Pr(μ)

∑
S′

∑
μ∈{μ∩I=∅}

Pr
(
S′|S�μ)

= eI(S)
1

n

(
n− 1
k− 1

) ∑
μ∈{μ∩I=∅}

∑
S′

Pr
(
S′|S�μ)

= eI(S)
1

n

(
n− 1
k− 1

) ∑
i∈{i:(i�i)/∈I}

(
n− 1 − |Ii|
k− 1

)
�
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This completes the proof of Lemma 2. To complete the proof of the theorem, note that
λk�I are decreasing in |I| and the second largest λk�I is for I = {(i� j)} with i �= j. Q.E.D.

PROOF OF THEOREM 3 (P. 1191): The proof follows immediately from the expression
for the stationary distribution obtained in Theorem 1 and Proposition 5. Q.E.D.

PROOF OF PROPOSITION 4 (P. 1192): For fixed S�S′ ∈ S, let KS′ |S ⊂ {2�3� � � � � n} be the
set of all meeting sizes k consistent with the possibility of transitioning from S to S′ of
a kCD with random utility. Recall that, for a fixed k, MS′ |S;k is the set of all meetings
of size k consistent with the possibility of transitioning from S to S′. The proof follows
from Lemma 1, together with the observation that KS′ |S = KS|S′ . Indeed, the unconditional
proposal Q from the algorithm in Table I can be written as

Q
(
S′|S) =

∑
k∈KS′ |S

pk(k)
∑

μ∈MS′ |S;k

Pr(μ)qμ(S′|S;μ)

=
∑
k∈KS|S′

pk(k)
∑

μ∈MS|S′ ;k

Pr(μ)qμ(S|S′;μ)

=Q
(
S|S′)� Q.E.D.
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